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J. Phys. A: Math. Gen. 14 (1981) L257-L261. Printed in Great Britain 

LETTER TO THE EDITOR 

Charge neutrality and boundary conditions in the classical 
Coulomb lattice gas 

E R Smith 
Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 6 May 1981 

Abstract. Exact equivalences between the two-dimensional classical Coulomb lattice gas, 
the discrete Gaussian solid on solid model and the Villain plane rotator model are explored 
for finite lattices. The energy of the Coulomb system is written in terms of solutions to the 
lattice Poisson equation with Dirichlet, Neumann or periodic boundary conditions. The 
role of charge neutrality conditions on the Coulomb system is clarified. 

The two-dimensional classical Coulomb lattice gas (CG) is known to be equivalent to the 
discrete Gaussian solid on solid model (DG) and the Villain plane rotator model (VPR) 
(Berezinskii 1971, Kosterlitz and Thouless 1973, Villain 1975, Chui and Weeks 1976, 
Knops 1977, Jod et a1 1977, Kadanoff 1978). The equivalences have been used in 
simulation studies of one model on a finite lattice to predict properties of the other 
models (e.g. Shugard etal1978,1980). A precise theory of the role of charge neutrality 
in CG is lacking and this letter presents some clarifying results for finite systems. Note 
that in CG, the charge on a lattice site is equal to an elementary charge times any integer. 

Consider a finite lattice A c Z 2 .  The configurations of CG are sets of integers 
{ q ( n ) ;  n E A, q ( n )  E 2). The energy of a configuration may be written 

where 4 ( n ;  C) is the solution of the lattice Poisson equation 

D24(n;  C) = - q ( n )  (2) 
on A with some specified boundary condition C. The operator D2 is the two- 
dimensional symmetric difference analogue of the Laplacian. The partition function in 
boundary conditions C is then 

z,,(Q*; A; C )  = c exp ( -$a2 c q ( n ~ n ;  C ) ) .  (3) 
{ q ( n ) }  ns i l  

Only those sets { q ( n ) }  for which a solution to (2) exists are included in the sum. Three 
boundary conditions are considered. 

(i) D (Dirichlet). Let A = LN = [ l ,  NI2, L% = [0, N + 112, aLg = L&\LN. For 
{ q ( n ) :  n E L N } ,  solve (2) on L N  such that 4 ( n ;  D) = 0 if n E 8Lg. 

(ii) Ne (Neumann). For { q ( n ) :  n ELN} ,  solve (2) on LN such that 4(1,  n ;  Ne)- 
4(0, n ;  Ne) = 4 ( N +  1, n ;  N e ) - 4 ( N ,  n ;  Ne) =4(n ,  1;  Ne)-c$(n, 0; Ne) = 4(n ,  N +  1 ;  
Ne) - 4(n ,  N ;  Ne) = 0, 1 s n s N .  
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(iii) P (Periodic). Let A = AN = [-N, NI2. For { q ( n ) :  n E AN}, extend periodically 
with period (2N + 1) to { q ( n ) :  n E Z2}. Solve (2) on A = 2’ with 4 ( n  + ( 2 N +  l)m ; P )  = 

Consider the boundary conditions for D. Define f k ( n ) =  

(2 / (N + 1))’12 sin[rrkn/(N + l)] and F k ( n )  =fkl(nl)fk2(n2). Then for all { q ( n ) :  n E L N }  

c#J(n;P) for n, m €2’. 

with A (5) = 4 - 2 cos 51 - 2 cos e2. Thus 

Use of the Poisson summation formula gives 

ZCG(Q’; L N ;  D )  = ZSW(LN; D ) Z D G ( ~ ~ / Q ~ ;  L$; 0). 

Here 

ZSw(LN;D)= fl (2?rA(rrk/(N+1))/Q2)1/2 
kELN 

is a spin wave partition function and 

z, ,~(K;L%;D)= {m(n):neLfi} exp(-K n e L & a o R ( n )  1 [ m ( n ) - m ( n + a ) l z ) .  (6 )  

In this equation R ( n )  is that subset of {(*1,0), (0, *1)} such that n + a  EL$ and 
m ( n )  = 0 if n E aL$. Thus ZDG(K; L$; 0)  is the partition function for a DG model on 
L% with zero displacement at the edge sites. The standard transformation to the VPR 
model (e.g. Jos6 et a1 1977) gives ZDG(K ; L$; D )  = ZVp,( VIIK ; L N + ~ ;  D) ,  the parti- 
tion function for the VPR model on LN+’ with free boundaries and the nearest- 
neighbour potential 

In their celebrated analysis of two-dimensional systems, Kosterlitz and Thouless 
(1973) assumed that only configurations with q ( n )  = 0, *l were important near the 
presumed critical point. The CG - DG equivalence for D boundary conditions gives 

Defining QN = X , , . L ~  q ( n ) ,  the result 

is obtained. Equations (8) and (9) give simple bounds for (q2(n)>cc and (@N>cG. 

Shugard et a1 (1978) give the estimate KR’ -2.92 so that (q2(n)>c&O.l3 at the 
presumed critical point. This certainly suggests that only small values of q ( n )  will 
contribute at the presumed critical point. This boundary condition requires no charge 
neutrality constraint but equation (9) shows that deviations from overall charge 
neutrality are governed by ( Q % ) C G ~ ~ N / Q ’  and that N-2(Q%)CG+0 as N + W .  
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For the boundary conditions Ne, define Lh = [0, N - l]’, g k ( n )  = 
(2/N)l/’ cos [.rrk(n -$)/NI if k # 0, go(n)  = N-l” and G k ( n )  = gkl(nl)gk,(nz) for k E 

Lh. If and only if QN = Z n G L N q ( n )  = 0, equation (2) has a solution which is 

plus an arbitrary constant. The partition function is 

Use of the Poisson summation formula gives 

~ c G ( Q ’ ;  LN; Ne)=Zsw(LN; Ne)ZDG(T’/Q’; LN;  Ne).  
Here 

Zsw(LN; Ne)  = N-l  [ ~ T A  (.rrk/N)/Q’]’/’ 
kEL& 
k#O 

is another spin wave partition function while 

ZDG(K;LN;Ne)= {m(n)} Sm(l,l),Oexp(-K n G L N o E S ( n )  C [m(n)-m(n+a)I’)* (12) 

In equation (12) the sum over a € S ( n )  is over those a(=(*l ,  0), (0, *l)) for which 
n + a  E LN. This is the partition function for a DG model on LN with free edges and the 
displacement at one site (chosen as (1, l ) ,  in a corner) fixed and zero. For these 
boundary conditions, equation (8) holds but with R (n) replaced by S ( n )  and the CG and 
DG expectations with D of equation (8) replaced by expectations with Ne, as long as n 
is not on an edge of LN. Further transformation gives ZDG(K; L N ; N ~ ) =  
ZvpR( V1lK; L N + ~ ;  Ne)  the partition function for a VPR model with nearest-neighbour 
potential VllK(0) and with the rotors on the edge of L N + ~  fixed at O(n)  = 0. 

For the boundary conditions P, define hk(n)  = (2N + l)-”’ exp (2nikn/2N + 1) and 
H k ( n )  = hk,(nl)hk,(nz). If and only if QN = q ( n )  = 0, then equation (2) has a 
solution which is 

plus an arbitrary constant. Thus the partition function may be written 

4 (n’)). 
H ;  (n )Hk (n ’1 

n , A A N 4 ( n )  (2Tk/(2N+ 1)) ~ c G ( Q ’ ;  A N ;  p) = SoN,o exp( -$a’ 
{ q ( n ) }  

k #O 

(14) 
Transformation to the DG model gives 

ZCG(Q’; A N ;  P )  = ZSWWN; P)ZD~(~’ /QZ;  A N ;  P) .  
Here 

Zsw(AN; P )  = (2N + I)-’ {~TA [ 2 ~ k / ( 2 N  + l)]/Q’}’’’ 
k € h N  
k #O 
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is a further spin wave partition function and 

is the partition function for a DG model in periodic boundary conditions with one site 
(chosen as 0) having fixed zero displacement. For a E T, n + a  is a nearest neighbour of 
n defined periodically. For these boundary conditions, equation (8) holds for all n if T 
replaces R (n) and the expectations are taken with the P boundary condition. Trans- 
formation of this DG model to a VPR model must be carried out with some care to give 
ZDGW ; AN ; P) = Z V d  Vl/K ; AN ; PI, where 

This is the partition function for a VPR model in periodic boundary conditions on AN in 
which the usual interactions between rotors at (nl, n2), (n l+ 1, n2) and at (nl ,  4, 
(nl, n2 + 1) are replaced by three-rotor interactions of the pair of rotors and a third rotor 
as shown. This means that while periodic boundary conditions apply, the model is not 
translationally invariant. 

Chui and Weeks (1976) consider a periodic DG partition function which on AN may 
be written 

They give arguments connecting this partition function in the limit U + 0 to that for a CG 

system with periodic boundary conditions and an exact charge neutrality constraint. A 
connection with this work is made by the relation 

In the transformation of ZD&; AN; U') to a CG partition function, the divergence as 
v + O  displayed by equation (18) appears in the spin wave partition function and 
Z D G ( K ;  AN; P) transforms to Z C G ( T ~ / K ;  AN; P).  

The author thanks D B Abraham for several enlightening discussions. 
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